Tangente | Übungen und Aufgaben mit Lösungen

Tangente Aufgaben PDF

Öffnen – Tangente  – Übungen (PDF)

Tangente

Was ist eine Tangente?

Eine Tangente ist eine Gerade, die eine Kurve an einer bestimmten Stelle tangiert.

Das Wort Tangente leitet sich vom lateinischen Wort für „berühren“ ab. So wie sich unsere Hände anfühlen, wenn wir sie an eine Oberfläche legen, so „berührt“ eine Tangente eine Kurve an einer Stelle.

Betrachten wir das Folgende Beispiel:

In diesem Fall ist P der Punkt, an dem sich die Tangente tangiert. Wenn wir eine Linie durch diesen Punkt ziehen, sollte sie die Kurve an dieser Stelle genau treffen. Wenn wir uns die Tangente genauer ansehen, werden wir feststellen, dass sie in P keine Krümmung aufweist. Wir können uns das so vorstellen:

Wenn wir uns eine Tangente an einer Kurve ansehen, können wir feststellen, dass sie die Steigung der Kurve an dieser Stelle genau wiedergibt.

Steigung der Tangente

Die Steigung einer Tangente ist der Wert der Ableitung der Kurve zum angegebenen Punkt. Die Steigung der Tangente kann mit folgender Formel berechnet werden:

Steigung der Tangente = Ableitung der Kurve / Steigung der x-Achse

Betrachten wir das Folgende Beispiel:

In diesem Fall ist P der Punkt, an dem sich die Tangente tangiert. Die Steigung der Tangente an dieser Stelle ist gleich der Steigung der Kurve an dieser Stelle. In diesem Fall ist die Steigung der Kurve an dieser Stelle gleich 3. Wir können dies mit der Formel berechnen:

Steigung der Tangente = 3 / 1

In diesem Fall ist die Steigung der Tangente 3.

Aufgaben

Aufgabe 1

Betrachte die folgende Kurve:

Berechne die Steigung der Tangente an P.

Lösung

In diesem Fall ist P der Punkt, an dem sich die Tangente tangiert. Die Steigung der Tangente an dieser Stelle ist gleich der Steigung der Kurve an dieser Stelle. In diesem Fall ist die Steigung der Kurve an dieser Stelle gleich 3. Wir können dies mit der Formel berechnen:

Steigung der Tangente = 3 / 1

In diesem Fall ist die Steigung der Tangente 3.

Aufgabe 2

Betrachte die folgende Kurve:

Berechne die Steigung der Tangente an P.

Lösung

In diesem Fall ist P der Punkt, an dem sich die Tangente tangiert. Die Steigung der Tangente an dieser Stelle ist gleich der Steigung der Kurve an dieser Stelle. In diesem Fall ist die Steigung der Kurve an dieser Stelle gleich -1. Wir können dies mit der Formel berechnen:

Steigung der Tangente = -1 / 1

In diesem Fall ist die Steigung der Tangente -1.

Aufgabe 3

Betrachte die folgende Kurve:

Berechne die Steigung der Tangente an P.

Lösung

In diesem Fall ist P der Punkt, an dem sich die Tangente tangiert. Die Steigung der Tangente an dieser Stelle ist gleich der Steigung der Kurve an dieser Stelle. In diesem Fall ist die Steigung der Kurve an dieser Stelle gleich 0. Wir können dies mit der Formel berechnen:

Steigung der Tangente = 0 / 1

In diesem Fall ist die Steigung der Tangente 0.

Aufgabe 4

Betrachte die folgende Kurve:

Berechne die Steigung der Tangente an P.

Lösung

In diesem Fall ist P der Punkt, an dem sich die Tangente tangiert. Die Steigung der Tangente an dieser Stelle ist gleich der Steigung der Kurve an dieser Stelle. In diesem Fall ist die Steigung der Kurve an dieser Stelle gleich 2. Wir können dies mit der Formel berechnen:

Steigung der Tangente = 2 / 1

In diesem Fall ist die Steigung der Tangente 2.

Aufgabe 5

Betrachte die folgende Kurve:

Berechne die Steigung der Tangente an P.

Lösung

In diesem Fall ist P der Punkt, an dem sich die Tangente tangiert. Die Steigung der Tangente an dieser Stelle ist gleich der Steigung der Kurve an dieser Stelle. In diesem Fall ist die Steigung der Kurve an dieser Stelle gleich 1. Wir können dies mit der Formel berechnen:

Steigung der Tangente = 1 / 1

In diesem Fall ist die Steigung der Tangente 1.

Öffnen – Tangente  – Aufgaben (PDF)

Tangente Aufgaben PDF