Trigonometrische Funktionen ableiten | Übungen und Aufgaben mit Lösungen

Trigonometrische Funktionen ableiten Aufgaben PDF

Öffnen – Trigonometrische Funktionen ableiten  – Aufgaben (PDF)

Trigonometrische Funktionen ableiten

In diesem Artikel lernst du, wie du die Ableitungen der trigonometrischen Funktionen Sinus, Kosinus und Tangens ableitest.

Ableitung von Sinus

Die Ableitung von Sinus ist Kosinus:

$$frac{d}{dx}sin(x)=cos(x)$$

Das bedeutet, dass die Steigung der Tangente an der Sinuskurve immer gleich dem Kosinus des betrachteten Punktes ist.

Ableitung von Kosinus

Die Ableitung von Kosinus ist Minus-Sinus:

$$frac{d}{dx}cos(x)=-sin(x)$$

Das bedeutet, dass die Steigung der Tangente an der Kosinus-Kurve immer gleich dem Negativen Sinus des betrachteten Punktes ist.

Ableitung von Tangens

Die Ableitung von Tangens ist Secant-Quadrat:

$$frac{d}{dx}tan(x)=sec^2(x)$$

Das bedeutet, dass die Steigung der Tangente an der Tangens-Kurve immer gleich dem Quadrat der Sekante des betrachteten Punktes ist.

Ableitungsregeln

Es gibt ein paar Regeln, die du bei der Ableitung von trigonometrischen Funktionen beachten solltest:

  • Der Sinus einer Summe ist gleich der Summe der Sinus-Terme: $sin(x+y)=sin(x)+sin(y)$
  • Der Cosinus einer Summe ist gleich der Differenz der Cosinus-Terme: $cos(x+y)=cos(x)-cos(y)$
  • Der Tangens einer Summe ist gleich der Differenz der Tangens-Terme: $tan(x+y)=tan(x)-tan(y)$

Aufgaben

Jetzt übst du, die Ableitungen der trigonometrischen Funktionen zu berechnen.

  1. Berechne $frac{d}{dx}sin(x)$.
  2. Berechne $frac{d}{dx}cos(2x)$.
  3. Berechne $frac{d}{dx}tan(x^2)$.
  4. Berechne $frac{d}{dx}sin(x^3-2x)$.
  5. Berechne $frac{d}{dx}tan(x+frac{pi}{4})$.

Lösungen

  1. $frac{d}{dx}sin(x)=cos(x)$
  2. $frac{d}{dx}cos(2x)=sin(-2x)=-sin(2x)$
  3. $frac{d}{dx}tan(x^2)=sec^2(x^2)=frac{1}{cos^2(x^2)}$
  4. $frac{d}{dx}sin(x^3-2x)=cos(x^3-2x)(3x^2-2)$
  5. $frac{d}{dx}tan(x+frac{pi}{4})=sec^2(x+frac{pi}{4})=frac{1}{cos^2(x+frac{pi}{4})}$

Öffnen – Trigonometrische Funktionen ableiten  – Aufgaben (PDF)

Trigonometrische Funktionen ableiten Aufgaben PDF